AI模型準(zhǔn)確進行天氣預(yù)測與氣候模擬
發(fā)布時間:2024-07-29 17:22:29 | 來源:科技日報 | 作者: | 責(zé)任編輯:郭頂《自然》23日報道了一種人工智能(AI)模型。該模型名為“NeuralGCM”,結(jié)合了流體動力學(xué)與神經(jīng)網(wǎng)絡(luò),能進行準(zhǔn)確的天氣預(yù)測和氣候模擬。模型超越了部分現(xiàn)有模型,與傳統(tǒng)模型相比,有望節(jié)省大量算力。
一般環(huán)流模型(GCMs)能表示大氣、海洋和陸地的物理過程,是天氣和氣候預(yù)測的基礎(chǔ)。而減少長期預(yù)報的不確定性以及估算極端天氣事件,則是氣候預(yù)測的關(guān)鍵。機器學(xué)習(xí)模型一直被認(rèn)為是天氣預(yù)測的一種替代手段,它們在節(jié)省算力成本方面具有優(yōu)勢,但在長期預(yù)報方面的表現(xiàn)常常不如一般環(huán)流模型。
鑒于此,美國谷歌研究院團隊設(shè)計了“NeuralGCM”,這個模型結(jié)合了機器學(xué)習(xí)和物理方法,能進行中短期天氣預(yù)報以及幾十年的氣候模擬。該模型對1—15天預(yù)報的準(zhǔn)確率能媲美歐洲中期天氣預(yù)報中心(ECMWF,最好的傳統(tǒng)物理天氣模型之一)的預(yù)測結(jié)果。對于最多提前10天的預(yù)報,“NeuralGCM”的準(zhǔn)確率與現(xiàn)有機器學(xué)習(xí)技術(shù)不相上下,有時甚至更好。
“NeuralGCM”的氣候模擬準(zhǔn)確率與最好的機器學(xué)習(xí)和物理方法相當(dāng)。當(dāng)團隊在“NeuralGCM”的40年氣候預(yù)測中加入海平面溫度后,他們發(fā)現(xiàn),模型給出的結(jié)果與從ECMWF數(shù)據(jù)中發(fā)現(xiàn)的全球變暖趨勢一致。新模型在預(yù)測龍卷風(fēng)及其軌跡方面也超過了已有的氣候模型。
團隊總結(jié)道,這些結(jié)果共同表明,機器學(xué)習(xí)是提升一般環(huán)流模型的一個可行手段。(記者 張夢然)